Hartley transforms over finite fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hartley transforms over finite fields

A general f ramework is presented for constructing transforms in the field of the input which have a convolutionlike property. The construction is carried out over finite fields, but is shown to be valid over the real and complex fields as well. It is shown that these basefield transforms can be v iewed as “projections” of the discrete Fourier transform @IT) and that they exist for all lengths ...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

classical wavelet transforms over finite fields

this article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. we present a concrete formulation for the frobenius norm of the classical wavelet transforms over finite fields. it is shown that each vector defined over a finite field can be represented as...

متن کامل

Sato-tate Theorems for Mellin Transforms over Finite Fields

as χ varies over all multiplicative characters of k. For each χ, S(χ) is real, and (by Weil) has absolute value at most 2. Evans found empirically that, for large q = #k, these q − 1 sums were approximately equidistributed for the “Sato-Tate measure” (1/2π) √ 4− x2dx on the closed interval [−2, 2], and asked if this equidistribution was provably true. Rudnick had done numerics on the sums T (χ)...

متن کامل

Computational Complexity of Fourier Transforms Over Finite Fields*

In this paper we describe a method for computing the Discrete Fourier Transform (DFT) of a sequence of n elements over a finite field GF(pm) with a number of bit operations 0(nm log(nm) ■ P(q)) where P(q) is the number of bit operations required to multiply two q-bit integers and q = 2 log2« + 4 log2m + 4 log2p. This method is uniformly applicable to all instances and its order of complexity is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 1993

ISSN: 0018-9448

DOI: 10.1109/18.259646